
The Iota Architecture and Programming Model

Version 1.0
October, 2012

David R. Miller
dave@millermattson.com

mailto:dave@millermattson.com

Table of Contents
Overview..3
Architecture..3
Memory and addressing model...4
Input and Output...4
Source Code Representation...4
Execution Model..5

PC – Program Counter...5
SP – Stack Pointer...5
NZ – Non-Zero Flag..5

Math...5
Example Program...5

Fibonacci sequence generation..5
Instruction Set Summary..8

System and stack...8
Math and logic...8
Conditionals..8
Unconditionals..8

Instruction Set Details:...9
System and stack...9
Math and logic...12
Conditionals..14
Unconditionals..16

Iota Simulator Reference Implementation..20
Copyright Information..22

The Iota Architecture and Programming Model Page 2 of 22

Overview
The Iota machine is a tiny programming language and abstract processing engine designed for educational use
for experimentation with automatic program generation. It has the following properties:

• Any bit pattern in Iota memory is a legal Iota program – there are no instruction faults
• All operations address existing memory – there are no memory faults
• Iota source code consists of a string of characters, one character per instruction

A corollary is that any string of random characters is the source code for a legal, executable Iota program. This
allows, for example, a genetic algorithm to use an Iota program in source form as its genome, evolving the
source code string until the Iota program produces the desired output.

Architecture
The Iota abstract machine is a Von Neumann architecture where all memory locations are accessed through a
program counter (PC) or stack pointer (SP). The machine architecture can be characterized as a processor with
three special-purpose registers (PC, SP, and NZ flag), L memory locations (“words”) W bits wide, and an
instruction set of about 40 opcodes. All possible states of memory and registers comprise legal Iota programs –
there is no possibility of an illegal instruction or a memory fault.

Allowing all possible bit patterns to result in legal (but not necessarily interesting) programs simplifies
experimentation with automatic program generation. AI programs, such as neural nets and genetic algorithms,
can regard Iota programs as arbitrary bit patterns, evaluate them with an Iota simulator, and compare the results
against some fitness metric, without concern for syntactic program correctness.

The Iota language is similar to a rudimentary assembly language. Iota source code can be expressed using either
long or short mnemonics. Here is a simple Iota program that copies its input to its output as long as the data is
nonzero, shown with long mnemonics with added comments:

LOOP ; loop until the ENDL opcode
IN ; read one char from stdin and push it on the stack
BNZ ; skip the next instruction if nonzero
HALT ; HALT
OUT ; pop a word from the stack and write it to stdout
ENDL ; loop forever

All memory addressing is through the stack pointer (SP) and is implied in each instruction, so there are no
operands specified in the source code.

Using the short mnemonics, each Iota instruction can be represented by a single character, and is the preferred
format for entering and saving programs. The sample program above is represented in source code form using
short mnemonics as the string:

“LIzHO]”.

An Iota abstract machine contains L memory locations, W bits wide, where

1 ≤ L ≤ 232

6 ≤ W ≤ 32

The Iota Architecture and Programming Model Page 3 of 22

This Iota architecture specifies a set of possible abstract machines, where the rank of a machine is determined by
unique combinations of L and W. An Iota program runs differently on machines of different ranks. For example,
an Iota program that runs correctly on an abstract machine of rank L=16, W=16 will not necessarily produce the
same results on a machine with rank L=20, W=8.

Memory and addressing model

The L words of memory are addressed as locations 0 through L – 1. The Stack Pointer (SP) seamlessly wraps
around, treating the entire address space as a circular buffer. Address calculations relating to the Program
Counter (PC) (e.g., branch targets) are performed using unsigned 32-bit arithmetic and then adjusted if necessary
to fit in the range [0..L). When the PC would have been advanced to address A where A > L, the address is
immediately readjusted to the address modulo L. This implies that it is impossible to address a non-existent
memory location.

Each memory location can store unsigned values in the range [0..2W). The memory locations are all writable.
Instruction opcodes are stored in memory by their numeric values as defined below.

Execution model
After machine reset, the three Iota registers have these initial values, and are described in more detail in a later
section.

PC=0
SP=0
NZ=false

For each simulation cycle, if the value at the memory location indexed by PC is a defined opcode number, the
opcode is executed in simulation as described in the tables below. If the memory location indexed by PC is not a
defined opcode number, it is executed as if it were a NOP opcode. This implies there are no instruction faults.

Input and Output
The Iota instruction set has one IN and one OUT instruction. These are character-oriented, regardless of the
value of W. Each time an IN instruction is executed, one character is consumed from a user-specified input
string or stream and pushed onto the Iota stack, narrowing or widening the value to W bits. Each OUT
instruction pops the top of the Iota stack, casts the value to a (char) type, and sends it to the abstract output
stream.

Source Code Representation

For Iota machines of rank W ≤ 8, the preferred source code format is a string of characters of length ≤ L. When
loaded into Iota memory, the source string S is interpreted as follows:

for each character C in S:
if C is a defined short mnemonic:

store the opcode by opcode number
else

store the character value narrowed to W bits

The Iota Architecture and Programming Model Page 4 of 22

When a short-mnemonic source code disassembly is generated by an Iota abstract machine of any rank, the
listing will render each memory value N as a single character as follows:

if N is an assigned opcode number:
show the short opcode mnemonic

else if N is representable as a single character:
show the literal character

else:
show a ';' (NOP) opcode

PC – Program Counter

The program counter PC contains a value in the range [0..L). Values wrap around the address space, such that
when the instruction execution reaches the end of memory, execution by default continues at location zero. After
machine reset, the PC starts at zero, and by default, is incremented by one after each instruction is executed. If
any branching or looping opcode results in a calculated address outside the range [0..L), the address is changed
to the calculated address modulo L so that it always refers to a valid memory location.

SP – Stack Pointer

The stack pointer SP contains a value in the range [0..L). Values wrap around, so that the entire memory
becomes a circular buffer for the SP. After machine reset, the SP starts at zero, and always points at the last item
stacked (the “top” of the stack). The SP grows toward lower addresses. If the SP changes to an address outside
the range [0..L), it is changed to the value modulo L so that it always refers to a valid memory location. This
implies that the first item pushed onto the stack after machine reset will be written to the top of memory at
location L-1, and the new SP will contain the value L-1 and will grow downward from there.

NZ – Non-Zero Flag

The non-zero flag NZ reflects the non-zeroness of the most recent instruction that read or wrote memory, as
defined in the details below. NZ = true means that the result was nonzero. The NZ flag can be tested with the BZ
and BNZ instructions. On machine reset, NZ is initialized to false.

Math

Values in memory are regarded as unsigned integers in the range [0..2W). The arithmetic opcodes evaluate their
operands as if using 32-bit unsigned integers with the results truncated to the least significant W bits. See
individual opcodes below for more details.

Example Program

Fibonacci sequence generation

For an Iota machine of rank L=32, W=16, the following Iota program generates and outputs the low order bytes
of the Fibonacci sequence, starting at 1, 2, 3, 5, 8, ...

“;;.TS+SObT704O.TT+TS+;;SOT^;;.TD”

The Iota Architecture and Programming Model Page 5 of 22

The following is a disassembly of the starting state:

 +----------- memory address
 | +-------- memory contents
 | | +------ short mnemonic
 | | | +--- long mnemonic
 0 00 ; NOP
 1 00 ; NOP
 2 10 . INC
 3 24 T TARGET
 4 0c S SWAP
 5 0e + ADD
 6 0c S SWAP
 7 04 O OUT
 8 23 b BRAP
 9 24 T TARGET
 a 2b 7 SKIP7
 b 0d 0 PUSH0
 c 28 4 SKIP4
 d 04 O OUT
 e 10 . INC
 f 24 T TARGET
 10 24 T TARGET
 11 0e + ADD
 12 24 T TARGET
 13 0c S SWAP
 14 0e + ADD
 15 00 ; NOP
 16 00 ; NOP
 17 0c S SWAP
 18 04 O OUT
 19 24 T TARGET
 1a 14 ^ XOR
 1b 00 ; NOP
 1c 00 ; NOP
 1d 10 . INC
 1e 24 T TARGET
 1f 06 D DUP

An execution trace through the first few output numbers is shown below. In each instruction cycle, the line
beginning with “T” shows the cycle number, the registers, and the 32 memory locations, followed by a one-line
disassembly of the next instruction to be executed. The memory location referenced by SP is highlighted in red.
The location referenced by PC is highlighted in blue. The output data is highlighted in green. Note that this Iota
program was not designed; it was evolved with a genetic algorithm.

T00: PC=00 SP=00 NZ=F mem[]=00 00 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 06
00: 00 ; NOP
T01: PC=01 SP=00 NZ=F mem[]=00 00 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 06
01: 00 ; NOP
T02: PC=02 SP=00 NZ=F mem[]=00 00 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 06
02: 10 . INC
T03: PC=03 SP=00 NZ=T mem[]=01 00 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 06
03: 24 T TARGET
T04: PC=04 SP=00 NZ=T mem[]=01 00 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 06
04: 0c S SWAP
T05: PC=05 SP=00 NZ=T mem[]=00 01 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 06
05: 0e + ADD
T06: PC=06 SP=1f NZ=T mem[]=00 01 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 01
06: 0c S SWAP
T07: PC=07 SP=1f NZ=T mem[]=01 01 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 00
07: 04 O OUT
Output =====> 0
T08: PC=08 SP=00 NZ=F mem[]=01 01 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 00
08: 23 b BRAP

The Iota Architecture and Programming Model Page 6 of 22

T09: PC=04 SP=00 NZ=F mem[]=01 01 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 00
04: 0c S SWAP
T10: PC=05 SP=00 NZ=F mem[]=01 01 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 00
05: 0e + ADD
T11: PC=06 SP=1f NZ=T mem[]=01 01 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 02
06: 0c S SWAP
T12: PC=07 SP=1f NZ=T mem[]=02 01 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 01
07: 04 O OUT
Output =====> 1
T13: PC=08 SP=00 NZ=T mem[]=02 01 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 01
08: 23 b BRAP
T14: PC=04 SP=00 NZ=T mem[]=02 01 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 01
04: 0c S SWAP
T15: PC=05 SP=00 NZ=T mem[]=01 02 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 01
05: 0e + ADD
T16: PC=06 SP=1f NZ=T mem[]=01 02 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 03
06: 0c S SWAP
T17: PC=07 SP=1f NZ=T mem[]=03 02 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 01
07: 04 O OUT
Output =====> 1
T18: PC=08 SP=00 NZ=T mem[]=03 02 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 01
08: 23 b BRAP
T19: PC=04 SP=00 NZ=T mem[]=03 02 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 01
04: 0c S SWAP
T20: PC=05 SP=00 NZ=T mem[]=02 03 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 01
05: 0e + ADD
T21: PC=06 SP=1f NZ=T mem[]=02 03 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 05
06: 0c S SWAP
T22: PC=07 SP=1f NZ=T mem[]=05 03 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 02
07: 04 O OUT
Output =====> 2
T23: PC=08 SP=00 NZ=T mem[]=05 03 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 02
08: 23 b BRAP
T24: PC=04 SP=00 NZ=T mem[]=05 03 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 02
04: 0c S SWAP
T25: PC=05 SP=00 NZ=T mem[]=03 05 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 02
05: 0e + ADD
T26: PC=06 SP=1f NZ=T mem[]=03 05 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 08
06: 0c S SWAP
T27: PC=07 SP=1f NZ=T mem[]=08 05 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 03
07: 04 O OUT
Output =====> 3
T28: PC=08 SP=00 NZ=T mem[]=08 05 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 03
08: 23 b BRAP
T29: PC=04 SP=00 NZ=T mem[]=08 05 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 03
04: 0c S SWAP
T30: PC=05 SP=00 NZ=T mem[]=05 08 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 03
05: 0e + ADD
T31: PC=06 SP=1f NZ=T mem[]=05 08 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 0d
06: 0c S SWAP
T32: PC=07 SP=1f NZ=T mem[]=0d 08 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 05
07: 04 O OUT
Output =====> 5
T33: PC=08 SP=00 NZ=T mem[]=0d 08 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 05
08: 23 b BRAP
T34: PC=04 SP=00 NZ=T mem[]=0d 08 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 05
04: 0c S SWAP
T35: PC=05 SP=00 NZ=T mem[]=08 0d 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 05
05: 0e + ADD
T36: PC=06 SP=1f NZ=T mem[]=08 0d 10 24 0c 0e 0c 04 23 24 2b 0d 28 04 10 24 24 0e 24 0c 0e 00 00 0c 04 24 14 00 00 10 24 15

The Iota Architecture and Programming Model Page 7 of 22

Instruction Set Summary
These are the opcodes of the Iota instruction set, shown with their single-character mnemonics and long
mnemonics.

System and stack
; NOP No-operation
R RESET Reset
H HALT Halt program execution
I IN Input from stdin
O OUT Output to stdout
p POP Pop the stack
D DUP Duplicate the top of the stack
C PUSHPC Push the current PC
c POPPC Pop the stack and set PC
Y POPSP Pop the stack and set SP
G SPTGT Set the SP to the next TARGET
P PUSHNZ Push the NZ flag
S SWAP Swap the top two stacked words

Math and logic
0 PUSH0 Push a zero onto the stack
+ ADD Add the top two stacked words
- SUB Subract the top two stacked words
. INC Increment the top of the stack
, DEC Decrement the top of the stack
* MUL Multiply the top two stacked words
/ DIV Divide the top two stacked words
^ XOR Bitwise exclusive OR
& AND Bitwise logical AND
| OR Bitwise logical OR
(SHL Logical shift left the top stacked word
) SHR Logical shift right the top stacked word
~ NOT Bitwise invert the top stacked word

Conditionals
Z BZ Branch on zero
z BNZ Branch on not-zero
= BEQ Branch on equal
> BGT Branch on greater than
{ BLT Branch on less than
} BGE Branch on greater or equal

Unconditionals
L LOOP Loop until the following ENDL
] ENDL End of LOOP
B BRAN Branch to next TARGET opcode
b BRAP Branch to previous TARGET opcode
T TARGET Branch target for BRAN, BRAP
1 SKIP1 Skip over the next instruction
2 SKIP2 Skip over the next two instructions
3 SKIP3 Skip over the next three instructions
4 SKIP4 Skip over the next four instructions
5 SKIP5 Skip over the next five instructions
6 SKIP6 Skip over the next six instructions
7 SKIP7 Skip over the next seven instructions
8 SKIP8 Skip over the next eight instructions
9 SKIP9 Skip over the next nine instructions

The Iota Architecture and Programming Model Page 8 of 22

Instruction Set Details:

In the pseudo-code below, “trunc W” represents a narrowing operator to W bits.

Temporaries such as “Temp” and “Op0” are abstractions for exposition only and do not exist in the machine
model.

System and stack

long mnemonic mnemonic numeric description

NOP ; 0 (see
note)

No-operation, do-nothing

The NOP opcode may be encoded in memory by the value zero, or by any value not assigned to another opcode.
During execution, all unassigned opcode values are mapped to the NOP instruction.

PC = PC + 1 mod L
SP = no change
NZ = no change

long mnemonic mnemonic numeric description

RESET R 1 Reset

PC = 0
SP = 0
NZ = false

long mnemonic mnemonic numeric description

HALT H 2 Halt program execution

Causes program execution to stop.

long mnemonic mnemonic numeric description

IN I 3 Input a char from stdin, push it onto the stack

SP = SP – 1 mod L
*SP = getchar() trunc W
PC = PC + 1 mod L
NZ = true if the result stacked is nonzero, else false

The Iota Architecture and Programming Model Page 9 of 22

long mnemonic mnemonic numeric description

OUT O 4 Pop a word from the stack, output to stdout

If the value on the top of the stack is outside the range of a char, it will be truncated to a char as it is output. This
is inconsequential for Iota machines of rank W ≤ 8.

putchar((char)*SP)
SP = SP + 1 mod L
PC = PC + 1 mod L
NZ = true if the character output is nonzero, else false

long mnemonic mnemonic numeric description

POP p 5 Pop a word from the stack

SP = SP + 1 mod L
PC = PC + 1 mod L
NZ = true if the item popped is nonzero, else false

long mnemonic mnemonic numeric description

DUP D 6 Duplicate the last stacked value

Temp = *SP
SP = SP – 1 mod L
*SP = Temp
PC = PC + 1 mod L
NZ = true if the value duplicated is nonzero, else false

long mnemonic mnemonic numeric description

PUSHPC C 7 Push the PC onto the stack

SP = SP – 1 mod L
*SP = PC trunc W
PC = PC + 1 mod L
NZ = no change

long mnemonic mnemonic numeric description

POPPC c 8 Pop the PC from the stack

PC = *SP mod L
SP = SP + 1 mod L
NZ = no change

The Iota Architecture and Programming Model Page 10 of 22

long mnemonic mnemonic numeric description

POPSP Y 9 Pop the SP from the stack

SP = *SP mod L
PC = PC + 1 mod L
NZ = no change

long mnemonic mnemonic numeric description

SPTGT G 10 Set the SP to the next TARGET opcode

A search for the subsequent TARGET opcode is done at the time the SPTGT instruction is encountered, from the
SPTGT instruction to memory location L - 1. The search does not wrap around. If no TARGET opcode is found,
or if the PC is already at L - 1, the SPTGT is executed as if it were a NOP instruction.

If a subsequent TARGET opcode is found:
SP = address of the TARGET opcode

else
SP = no change

PC = PC + 1 mod L
NZ = no change

long mnemonic mnemonic numeric description

PUSHNZ P 11 Push the NZ flag

SP = SP – 1 mod L
*SP = NZ
PC = PC + 1 mod L
NZ = no change

long mnemonic mnemonic numeric description

SWAP S 12 Swap the top two items on the stack

Temp = *SP
*SP = *(SP + 1 mod L)
*(SP + 1 mod L) = Temp
PC = PC + 1 mod L
NZ = no change

The Iota Architecture and Programming Model Page 11 of 22

Math and logic

long mnemonic mnemonic numeric description

PUSH0 0 13 Push a zero onto the stack

SP = SP – 1 mod L
*SP = 0
PC = PC + 1 mod L
NZ = false

long mnemonic mnemonic numeric description

ADD + 14 Add the top two stacked words, push the result

SP = SP – 1 mod L
SP = ((SP + 2 mod L) + *(SP + 1 mod L)) trunc W
PC = PC + 1 mod L
NZ = true if the result is nonzero, else false

long mnemonic mnemonic numeric description

SUB - 15 Subtract the top two stacked words and push the result

SP = SP – 1 mod L
SP = ((SP + 2 mod L) - *(SP + 1 mod L)) trunc W
PC = PC + 1 mod L
NZ = true if the result is nonzero, else false

long mnemonic mnemonic numeric description

INC . (period) 16 Increment the item at the top of the stack

*SP = (*SP) + 1 trunc W
PC = PC + 1 mod L
NZ = true if the result is nonzero, else false

long mnemonic mnemonic numeric description

DEC , (comma) 17 Decrement the item on the top of the stack

*SP = (*SP) – 1 trunc W
PC = PC + 1 mod L
NZ = true if the result is nonzero, else false

The Iota Architecture and Programming Model Page 12 of 22

long mnemonic mnemonic numeric description

MUL * 18 Multiply the top two stacked words and push the result

SP = SP – 1 mod L
SP = ((SP + 2 mod L) * (*(SP + 1 mod L)) trunc W
PC = PC + 1 mod L
NZ = true if the result is nonzero, else false

long mnemonic mnemonic numeric description

DIV / 19 Pop two words, divide, push the quotient and remainder

If the divisor is zero, the quotient will be the maximum possible word value, and the remainder zero.

Op0 = *(SP + 1 mod L)
Op1 = *SP
if Op1 is zero, change Op0 to the maximum value and Op1 to 1
*(SP + 1 mod L) = quotient of Op0 / Op1 trunc W
*SP = remainder of Op0 / Op1
PC = PC + 1 mod L
NZ = true if the quotient is nonzero, else false

long mnemonic mnemonic numeric description

XOR ^ 20 Bitwise XOR the top two stacked words and push the result

SP = SP - 1 mod L
SP = ((SP + 2 mod L) XOR *(SP + 2 mod L)) trunc W
PC = PC + 1 mod L
NZ = true if the result is nonzero, else false

long mnemonic mnemonic numeric description

AND & 21 Bitwise AND the top two stacked words and push the result

SP = SP - 1 mod L
SP = ((SP + 2 mod L) AND *(SP + 2 mod L)) trunc W
PC = PC + 1 mod L
NZ = true if the result is nonzero, else false

The Iota Architecture and Programming Model Page 13 of 22

long mnemonic mnemonic numeric description

OR | 22 Bitwise OR the top two stacked words and push the result

SP = SP - 1 mod L
SP = ((SP + 2 mod L) OR *(SP + 2 mod L)) trunc W
PC = PC + 1 mod L
NZ = true if the result is nonzero, else false

long mnemonic mnemonic numeric description

SHL (23 Logical shift left

*SP = *SP << 1 trunc W
PC = PC + 1 mod L
NZ = true if the result is nonzero, else false

long mnemonic mnemonic numeric description

SHR) 24 Logical shift right

*SP = *SP >> 1 trunc W
PC = PC + 1 mod L
NZ = true if the result is nonzero, else false

long mnemonic mnemonic numeric description

NOT ~ 25 Bitwise NOT

*SP = NOT *SP trunc W
PC = PC + 1 mod L
NZ = true if the result is nonzero, else false

Conditionals

long mnemonic mnemonic numeric description

BZ Z 26 Branch if zero (NZ flag is false)

Skips one opcode if NZ is false.

if NZ is false:
PC = PC + 2 mod L

else
PC = PC + 1 mod L

SP = no change
NZ = no change

The Iota Architecture and Programming Model Page 14 of 22

long mnemonic mnemonic numeric description

BNZ z 27 Branch if nonzero (NZ flag is true)

Skips one opcode if NZ is true.

if NZ is true:
PC = PC + 2 mod L

else
PC = PC + 1 mod L

SP = no change
NZ = no change

long mnemonic mnemonic numeric description

BEQ = 28 Compare top two stacked words, branch if equal

if *(SP + 1 mod L) .eq. *SP
PC = PC + 2 mod L

else
PC = PC + 1 mod L

SP = no change
NZ = no change

long mnemonic mnemonic numeric description

BGT > 29 Compare top two stacked words, branch if greater than

if *(SP + 1 mod L) > *SP
PC = PC + 2 mod L

else
PC = PC + 1 mod L

SP = no change
NZ = no change

long mnemonic mnemonic numeric description

BLT { 30 Compare top two stacked words, branch if less than

if *(SP + 1 mod L) < *SP
PC = PC + 2 mod L

else
PC = PC + 1 mod L

SP = no change
NZ = no change

The Iota Architecture and Programming Model Page 15 of 22

long mnemonic mnemonic numeric description

BGE } 31 Compare top two stacked words, branch if greater than or
equal

if *(SP + 1 mod L) ≥ * SP
PC = PC + 2 mod L

else
PC = PC + 1 mod L

SP = no change
NZ = no change

Unconditionals

long mnemonic mnemonic numeric description

LOOP L 32 Repeat the following instructions up to the next ENDL

PC = PC + 1 mod L
SP = no change
NZ = no change

long mnemonic mnemonic numeric description

ENDL] 33 End of LOOP

Execution resumes at the instruction following the preceding LOOP opcode. A search for the preceding LOOP
opcode is done at the time the ENDL instruction is encountered, from the current PC to location 0. The search
does not wrap around. If no LOOP opcode is found, or if the PC is already at location 0, the ENDL is executed
as if it were a NOP instruction.

If there is a preceding LOOP instruction:
PC = location of LOOP opcode + 1

else:
PC = PC + 1 mod L

SP = no change
NZ = no change

The Iota Architecture and Programming Model Page 16 of 22

long mnemonic mnemonic numeric description

BRAN B 34 Branch to the next TARGET opcode

A search for the subsequent TARGET opcode is done at the time the BRAN instruction is encountered, from the
BRAN instruction to memory location L - 1. The search does not wrap around. If no TARGET opcode is found,
the BRAN is executed as if it were a NOP instruction. If the TARGET is found at memory location L – 1,
execution will resume at location 0.

If there is a subsequent TARGET instruction:
PC = (location of TARGET opcode + 1) mod L

else:
PC = PC + 1 mod L

SP = no change
NZ = no change

long mnemonic mnemonic numeric description

BRAP b 35 Branch to the previous TARGET opcode

A search for the previous TARGET opcode is done at the time the BRAP instruction is encountered, from the
BRAP instruction to memory location 0. The search does not wrap around. If no TARGET opcode is found or if
the PC is already at location 0, the BRAP is executed as if it were a NOP. instruction.

If there is a prior TARGET instruction:
PC = location of TARGET opcode + 1

else:
PC = PC + 1 mod L

SP = no change
NZ = no change

long mnemonic mnemonic numeric description

TARGET T 36 Branch target for BRAN and BRAP

See SPTGT, BRAN, and BRAP instructions for the semantics. The TARGET opcode is just a marker, and is
executed as if it were a NOP.

PC = PC + 1 mod L
SP = no change
NZ = no change

The Iota Architecture and Programming Model Page 17 of 22

long mnemonic mnemonic numeric description

SKIP1 1 37 Skip one instruction

PC = PC + 2 mod L
SP = no change
NZ = no change

long mnemonic mnemonic numeric description

SKIP2 2 38 Skip the next two instructions

PC = PC + 3 mod L
SP = no change
NZ = no change

long mnemonic mnemonic numeric description

SKIP3 3 39 Skip the next three instructions

PC = PC + 4 mod L
SP = no change
NZ = no change

long mnemonic mnemonic numeric description

SKIP4 4 40 Skip the next four instructions

PC = PC + 5 mod L
SP = no change
NZ = no change

long mnemonic mnemonic numeric description

SKIP5 5 41 Skip the next five instructions

PC = PC + 6 mod L
SP = no change
NZ = no change

The Iota Architecture and Programming Model Page 18 of 22

long mnemonic mnemonic numeric description

SKIP6 6 42 Skip the next six instructions

PC = PC + 7 mod L
SP = no change
NZ = no change

long mnemonic mnemonic numeric description

SKIP7 7 43 Skip the next seven instructions

PC = PC + 8 mod L
SP = no change
NZ = no change

long mnemonic mnemonic numeric description

SKIP8 8 44 Skip the next eight instructions

PC = PC + 9 mod L
SP = no change
NZ = no change

long mnemonic mnemonic numeric description

SKIP9 9 45 Skip the next nine instructions

PC = PC + 10 mod L
SP = no change
NZ = no change

The Iota Architecture and Programming Model Page 19 of 22

Iota Simulator Reference Implementation
iota(1)

NAME

iota – command line simulator for running programs in the Iota tiny programming language.

SYNOPSIS

iota [--version] [-L arch-length] [-W arch-width] [-k max-cycles]
 [-I data-input-string] [-S] [-T] program-source

COPYRIGHT

GPLv3 or later.

DESCRIPTION

This is a command-line simulator of the Iota tiny architecture and programming language. The source
code for an Iota program is a string of characters, where each character is one complete instruction. For
example, the Iota program 'Gp..OOOOOOOOOOOOHTFello World!', when executed, will output the
character string "Hello World!".

The Iota programming language was designed for experimentation with genetic algorithms that evolve
procedural solutions to specific problems. All possible bit patterns are legal Iota programs, and all
character strings form legal Iota source code. All Iota programs execute deterministically without the
possibility of instruction or memory faults. See the link at the author information below for more
information.

OPTIONS

-h | --help
Print the command line synopsis.

--version
Print the Iota simulator and language version numbers.

-L arch-length
The number of locations in the Iota simulated memory, in the range 1 to 2^32. Default is the
length of the program string. Iota memory is initialized to all NOP opcodes (numeric value
zero).

-W arch-width
The width, in bits, of Iota simulated memory, in the range 6 to 32. Default is 8 bits. Iota opcodes
are encoded to fit in 6 bits width.

-k max-cycles
Set an upper limit on the number of Iota instructions executed, in the range 1 to 2^32. Default is
200.

-I data-input-string
This string supplies the characters for the Iota IN opcode. Each IN instruction reads one
character from this string. After the last character has been consumed, subsequent IN
instructions will continue to read the same last character. Iota programs have no way of
detecting the end of the input data stream.

The Iota Architecture and Programming Model Page 20 of 22

-S
Print an Iota memory dump and disassembly after loading the program.

-T
Print a trace of the Iota program execution, showing the state of memory and registers after each
instruction.

program-string
The source code for the Iota program to be executed.

EXIT STATUS

The program exits with 0 if the Iota program ran successfully and stopped at a HALT instruction, or if it
stopped after executing max-cycles (-k option) instructions. The program exits with a nonzero exit code
for any error.

FILES

iota-machine.h is the header file with the interface and implementation of the simulator. iota.cpp is the
command line driver.

HISTORY

Ver. 1.0 of the Iota language and simulator was released October, 2012.

AUTHOR

David R. Miller <dave@millermattson.com>

More information is available at http://millermattson.com/dave

The Iota Architecture and Programming Model Page 21 of 22

Copyright Information
Copyright 2012 David R. Miller. Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the license is
included in the accompanying file named COPYING and online at http://www.gnu.org/licenses/fdl.txt.

The Iota Architecture and Programming Model Page 22 of 22

http://www.gnu.org/licenses/fdl.txt

	Overview
	Architecture
	Memory and addressing model
	Execution model
	Input and Output
	Source Code Representation
	PC – Program Counter
	SP – Stack Pointer
	NZ – Non-Zero Flag

	Math
	Example Program
	Fibonacci sequence generation

	Instruction Set Summary
	System and stack
	Math and logic
	Conditionals
	Unconditionals

	Instruction Set Details:
	System and stack
	Math and logic
	Conditionals
	Unconditionals

	Iota Simulator Reference Implementation
	Copyright Information

